RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика жидкости и газа Fluid Dynamics

  • ISSN (Print) 1024-7084
  • ISSN (Online) 3034-5340

On Self-Similarity of Laminar Jets

PII
S30345340S1024708425030034-1
DOI
10.7868/S3034534025030034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
30-36
Abstract
The problems of laminar jets that admit self-similar solutions are considered. A method for determining the self-similarity parameter is proposed based on the condition of existence of a solution to equations in self-similar variables under given boundary conditions with only a single self-similarity parameter. In problems of plane free and wall jets the self-similarity parameters are determined analytically. In the problem of a three-dimensional wall jet, the self-similarity parameter is determined using a neural network.
Keywords
пристенные струи автомодельность параметр автомодельности нейронные сети ламинарная струя
Date of publication
23.03.2025
Year of publication
2025
Number of purchasers
0
Views
38

References

  1. 1. Schlichting H. Laminare Strahlausbreitung // ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 1933. Jg. 13. No. 4. S. 260–263.
  2. 2. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969. 744 с.
  3. 3. Bickley W.G. LXXIII. The plane jet // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1937. V. 23. No. 156. P. 727–731.
  4. 4. Акатинов Н. И. Распространение плоской ламинарной струи вязкой жидкости вдоль твердой стенки // Тр. Ленинградского политех. ин-та. 1953. № 5. С. 24–31.
  5. 5. Glauert M.B. The wall jet // Journal of Fluid Mechanics. 1956. V. 1. No. 6. P. 625–643.
  6. 6. Бут И. И., Гайфуллин А. М., Жанк В. В. Дальнее поле трехмерной пристенной ламинарной струи // Изв. РАН. Механика жидкости и газа. 2021. № 6. С. 51–61.
  7. 7. Gaifullin A.M., Shcheglov A.S. Self-Similarity of a Wall Jet with Swirl // Lobachevskii Journal of Mathematics. 2022. V. 43. No. 5. P. 1098–1103.
  8. 8. Лойцянский Л. Г. Механика жидкости и газа. М.: Наука, 1978. 736 с.
  9. 9. Raissi M., Perdikaris P., Karniadakis G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations // Journal of Computational Physics. 2019. V. 378. P. 686–707.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library