RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика жидкости и газа Fluid Dynamics

  • ISSN (Print) 1024-7084
  • ISSN (Online) 3034-5340

Hydrodynamic Instability of Spatially Periodic Flows of Homogeneous and Stratified Fluid with Regard for Friction. Formation of Steady-State Vortex Disturbances

PII
S30345340S1024708425030066-1
DOI
10.7868/S3034534025030066
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
60-72
Abstract
The stability of spatially periodic flows of homogeneous and stratified fluid is investigated with regard for bottom friction. The Galerkin method with three basis Fourier harmonics is used to solve the stability problem. A system of ordinary differential equations for the amplitudes of the Fourier harmonics is formulated. A solution to the linearized version of the system is obtained and an expression for the increment of disturbance growth is found. It is established that at the nonlinear stage of development the exponential growth of linear disturbances is replaced by the regime of establishing steady-state periodic disturbances in form of closed cells. These disturbances reduce the averaged horizontal velocity of the flow. Analytical expressions for the spatial period and amplitude of steady-state disturbances are obtained.
Keywords
гидродинамическая неустойчивость придонное трение инкремент нарастания вихревые ячейки
Date of publication
21.03.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. Булатов В.В., Владимиров Ю.В. Волны в стратифицированных средах. М.: Наука, 2015. 735 с.
  2. 2. Гилл А. Динамика атмосферы и океана. М.: Мир, 1986. Т. 2. 415 с.
  3. 3. Монин А.С. Теоретические основы геофизической гидродинамики. Л.: Гидрометеоиздат, 1988. 433 с.
  4. 4. Обухов А.М. Течение Колмогорова и его лабораторное моделирование // УМН. 1983. Т. 38. Вып. 4 (232). С. 101–111.
  5. 5. Гледзер Е.Б., Должанский Ф.В., Обухов А.М. Системы гидродинамического типа и их применение. М.: Наука. 1981. 366 с.
  6. 6. Thess A. Instabilities in two-dimensional spatial periodic flows. Part I: Kolmogorov flow // Phys. Fluids A. 1992. V. 4 (7). P. 1385–1395.
  7. 7. Мешалкин Л.Д., Синай Я.Г. Исследование устойчивости стационарного решения одной системы уравнений плоского движения несжимаемой вязкой жидкости // ПММ. 1961. Т. 25. № 6. С. 1700–1705.
  8. 8. Goton K., Yamada M., Mizushima Y. The theory of stability of spatially periodic flows // J. Fluid Mech. 1983. V. 127. P. 45–58.
  9. 9. Beaumont D. The stability of spatially periodic flows // J. Fluid Mech. 1981. V. 108. P. 461–474.
  10. 10. Батчаев А.М., Курганский М.В. О неустойчивости периодического сдвигового течения слабостратифицированной жидкости // Известия AH CCCP. Физика атмосферы и океана. 1986. Т. 22. № 1. С. 3–9.
  11. 11. Balmforth N.J, Young Y.N. Stratified Kolmogorov flow // J. Fluid Mech. 2002. V. 450. P. 131–167.
  12. 12. Manfori A., Young W. Stability of β-plane Kolmogorov flow // Phys. D. 2002. V. 162. P. 208–232.
  13. 13. Matsuda M. Stability of the basic solution of Kolmogorov flow with a bottom friction // Tokyo J. Math. 2010. V. 33. P. 65–72.
  14. 14. Lucas D., Kerswell R. Spatiotemporal dynamics in two dimensional Kolmogorov flow over large domains // J. Fluid. Mech. 2014. V. 750. P. 518–554.
  15. 15. Kim S., Okamoto H. Unimodal patterns appearing in the Kolmogorov flows at large Reynolds numbers // Nonlinearity. 2015. V. 28. P. 3219–3242.
  16. 16. Sivashinsky G. Weak turbulence in periodic flows // Phys. D. 1985. No. 17. P. 243–255.
  17. 17. Sivashinsky G., Yakhot V. Negative viscosity effect in large scale flows // Phys. Fluids. 1985. V. 28. P. 1040–1042.
  18. 18. Kalashnik M., Kurgansky M. Nonlinear dynamics of long-wave perturbations of the Kolmogorov flow for large Reynolds numbers // Ocean Dyn. 2018. V. 68. P. 1001–1012.
  19. 19. Boffetta G., Celani A., Mazzino A. Drag reduction in the turbulent Kolmogorov flow // Phys Rev. E. V. 71. 2005. 036307.
  20. 20. Kalashnik M.V., Kurgansky M.V. Nonlinear Oscillations in a Two-Dimensional Spatially Periodic Flow // Eur. Phys. J. Plus. 2024. V. 139. No. 2. P. 1–11.
  21. 21. Blumen W. Uniform potential vorticity flow: part I. Theory of wave interactions and two dimensional turbulence // J. Atmos. Sci. 1978. V. 35. P. 774–783.
  22. 22. Held I.M., Pierrehumbert R.T., Garner S.T., Swanson K.L. Surface quasi-geostrophic dynamics // J. Fluid Mech. 1995. V. 282. P. 1–20.
  23. 23. Pedlosky J. Geophysical Fluid Dynamics. Springer-Verlag. Berlin. New York. 1987. 710 p.
  24. 24. Lapeyre G., Klein P. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory // J. Phys. Oceanogr. 2006. V. 36. P. 165–176.
  25. 25. Badin G. Surface semi-geostrophic dynamics in the ocean // J. Fluid Dyn. 2013. 107. P. 526–540.
  26. 26. Harvey B., Ambaum M. Instability of surface temperature filaments in strain and shear // Quart. J. Roy. Meteor. Soc. 2010. V. 136. P. 1506–1513.
  27. 27. Kalashnik M.V., Kurgansky M.V., Kostrykin S.V. Instability of surface quasigeostrophic spatially periodic flows // J. Atmos. Sci. 2020. V. 77. P. 239–255.
  28. 28. Kalashnik M.V., Chkhetiani O.G., Kurgansky M.V. Discrete SQG models with two boundaries and baroclinic instability of jet flows // Phys. Fluids. 2021. V. 33. 076608.
  29. 29. Калашник М.B., Курганский М.В., Чхетиани О.Г. Бароклинная неустойчивость в геофизической гидродинамике // УФН. 2022. Т. 192. № 10. С. 1110–1144.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library