RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика жидкости и газа Fluid Dynamics

  • ISSN (Print) 1024-7084
  • ISSN (Online) 3034-5340

Simulation of One-Sided Convection in a Porous Medium Using a Nonlinear Equation of State

PII
S30345340S1024708425030094-1
DOI
10.7868/S3034534025030094
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
94-106
Abstract
One-sided density-driven convection in a porous medium is simulated numerically with reference to hydrodynamic processes occurring during injection of carbon dioxide into underground porous formations. When carbon dioxide dissolves in water or oil, the density of solution increases. This leads to the growth of instability. A hydrodynamic model that includes the continuity equation, the equation of motion (in the form of Darcy equation), and the convection-diffusion equation has been used. The equation of state that relates the density of the fluid phase to the concentration of carbon dioxide is nonlinear. The density of solution reaches a maximum at a certain concentration, which varies. A new computational code based on the finite-difference method has been developed to solve the problem. The effect of the concentration that gives the maximum density on the parameters of convective motion and mass transfer is investigated. In particular, it is found that if the maximum density occurs at a higher concentration, the amount of carbon dioxide that is transported downward by the convective flow increases. This means that, in this case, convective dissolution is more effective in trapping of carbon dioxide at depth.
Keywords
углекислый газ пористая среда нелинейное уравнение состояния односторонняя конвекция конвективное растворение численное моделирование
Date of publication
16.03.2025
Year of publication
2025
Number of purchasers
0
Views
25

References

  1. 1. Huppert H.E., Neufeld J.A. The fluid mechanics of carbon dioxide sequestration // Ann. Rev. Fluid Mech. 2014. V. 46. P. 255–272.
  2. 2. Ennis-King J., Paterson L. Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations // SPE Journal. 2005. V. 10. No. 3. P. 349–356.
  3. 3. Paoli M.De. Convective mixing in porous media: a review of Darcy, pore-scale and Hele-Shaw studies // Eur. Phys. J. E. 2023. V. 46. P. 129.
  4. 4. Soboleva E. Instability problems and density-driven convection in saturated porous media linking to hydrogeology: A review // Fluids. 2023. V. 8. No. 2. P. 36.
  5. 5. Riaz A., Hesse M., Tchelepi H.A., Orr F.M. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media // J. Fluid Mech. 2006. V. 548. P. 87–111.
  6. 6. Pau G.S.H., Bell J.B., Pruess K., Almgren A.S., Lijewski M.J., Zhang K. High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers // Adv. Water Res. 2010. V. 33. P. 443–455.
  7. 7. Soboleva E.B. Density-driven convection in an inhomogeneous geothermal reservoir // Int. J. Heat Mass Transf. 2018. V. 127 (C). P. 784–798.
  8. 8. Neufeld J.A., Hesse M.A., Riaz A., Hallworth M.A., Tchelepi H.A., Huppert H.E. Convective dissolution of carbon dioxide in saline aquifers // Geophys. Res. Lett. 2010. V. 37. P. 22404.
  9. 9. Daniel D., Riaz A. Effect of viscosity contrast on gravitationally unstable diffusive layers in porous media // Phys. Fluids. 2014. V. 26. P. 116601.
  10. 10. Elenius M.T., Gasda S.E. Convective mixing driven by non-monotonic density // Transp. Porous Med. 2021. V. 138. P. 133–155.
  11. 11. Leonard B.P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Comput. Methods Appl. Mech. Eng. 1979. V. 19. P. 59–98.
  12. 12. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоиздат, 1984. 124 c.
  13. 13. Nield D.A., Bejan A. Convection in Porous Media. New York: Springer, 2006. 640 p.
  14. 14. Соболева Е.Б., Цыпкин Г.Г. Численное моделирование конвективных течений в грунте при испарении воды, содержащей растворенную примесь // Изв. РАН. МЖГ. 2014. №5. С. 88–99.
  15. 15. Соболева Е.Б. Метод численного моделирования концентрационно-конвективных течений в пористых средах в приложении к задачам геологии // Ж. вычисл. матем. и матем. физ. 2019. Т. 59. №11. С. 162–173.
  16. 16. Соболева Е.Б. Начало конвекции Рэлея–Тейлора в пористой среде // Изв. РАН. МЖГ. 2021. №2. С. 52–62.
  17. 17. Соболева Е.Б. Влияние конечных возмущений плотности на развитие неустойчивости Рэлея–Тейлора в пористой среде // Теор. и матем. физ. 2022. Т. 211. №2. С. 333–346.
  18. 18. Соболева Е.Б. Численное моделирование фильтрационных концентрационно-конвективных течений с контрастом вязкости // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. №11. С. 1927–1939.
  19. 19. Wang Zh., Hou J. Measurement of CO2 diffusion coefficients in both bulk liquids and carven filling porous media of fractured-vuggy carbonate reservoirs at 50 MPa and 393 K // RSC Adv. 2021. V. 11. P. 19712.
  20. 20. Коллинз Р. Течения жидкостей через пористые материалы. М.: Мир, 1964. 352 с.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library