- Код статьи
- S30345340S1024708425030123-1
- DOI
- 10.7868/S3034534025030123
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 3
- Страницы
- 135-146
- Аннотация
- Представлены результаты численного исследования течения в канале при вдуве кольцевой радиальной струи вдоль поверхности Коанда. Использованы двумерные осесимметричные осредненные по Рейнольдсу уравнения Навье–Стокса (RANS) в сочетании с уравнениями полуэмпирической модели турбулентности "
- Ключевые слова
- газодинамика эффект Коанда эжекция радиальная сходящаяся струя
- Дата публикации
- 16.03.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 28
Библиография
- 1. Вулис Л.А., Кашкаров В.П. Теория струи вязкой жидкости. М.: Наука, 1965. 431 c.
- 2. Глазнев В.Н., Запрягаев В.И., Усков В.Н., Терехова Н.М., Ерофеев В.К., Григорьев В.В., Кожемякин А.О., Котенок В.А., Омельченко А.В. Струйные и нестационарные течения в газовой динамике. Новосибирск: Изд-во СОРАН, 2000. 200 с.
- 3. Wille R., Fernholtz H. Report of the first European mechanics colloquium on the Coanda effect // Journal of Fluid Mechanics. 1965. V. 23. No. 4. P. 801–819. https://doi.org/10.1017/S0022112065001702
- 4. Lubert C.P. Some recent experimental results concerning turbulent Coanda wall jets // 168th Meeting of the Acoustical Society of America. 2014. V. 22. Paper 040004. https://doi.org/10.1121/2.0000040
- 5. Gregory-Smith D.G., Senior P. The effects of base steps and axisymmetry on supersonic jets over Coanda surfaces // International Journal of Heat and Fluid Flow. 1994. V. 15. No. 4. P. 291–298. https://doi.org/10.1016/0142-727X (94)90014-0
- 6. Gregory-Smith D.G., Gilchrist A.R., Senior P. A combined system for measurements of high-speed flow by interferometry, schlieren and shadowgraph // Measurement Science and Technology. 1990. V. 1. P. 419–424. https://doi.org/10.1088/0957-0233/1/5/008
- 7. Gregory-Smith D.G., Gilchrist A.R. The compressible Coanda wall jet — an experimental study of jet structure and breakaway // International Journal of Heat and Fluid Flow. 1987. V. 8. No. 2. P. 156–164. https://doi.org/10.1016/0142-727X (87)90019-1
- 8. Wang Q., Qu F., Zhao Q., Bai J. Numerical study of the hysteresis effect on the supercritical airfoil for the transonic circulation control // Aerospace Science and Technology. 2022. V. 126. Paper 107645. https://doi.org/10.1016/j.ast.2022.107645
- 9. Dragan V. Numerical investigations of Coanda lift on a double curvature super circulated ramp // International Journal of Civil & Structural Engineering. 2011. V. 2. No. 1. P. 241–248. https://doi.org/10.6088/ijcser.00202010105
- 10. Dragan V. A new mathematical model for high thickness Coanda effect wall jets // Review Air Force Academy. 2013. V. 23. No. 1. P. 23–28.
- 11. Shakouchi T., Fukushima S. Fluidic thrust, propulsion, vector control of supersonic jets by flow entrainment and the Coanda effect // Energies. 2022. V. 15. No. 22. P. 858–861. https://doi.org/10.3390/en15228513
- 12. Gandomkar M., Amini Foroushani J. Experimental and numerical investigation of using Coanda effect for producing underwater propulsion // Modares Mechanical Engineering. 2020. V. 20. No. 3. P. 777–786.
- 13. El Halal Y., Marques C.H., Rocha L.A., Isoldi L.A., Lemos R.D.L., Fragassa C., dos Santos E.D. Numerical study of turbulent air and water flows in a nozzle based on the Coanda effect // Journal of Marine Science and Engineering. 2019. V. 7. No. 2. Paper 21. https://doi.org/10.3390/jmse7020021
- 14. Miozzi M., Lalli F., Romano G.P. Experimental investigation of a free-surface turbulent jet with Coanda effect // Experiments in Fluids. 2010. V. 49. P. 341–353. https://doi.org/10.1007/s00348-010-0885-1
- 15. Соколова И.Н. Экспериментальное исследование пределов реализации течения Коанда // Ученые записки ЦАГИ. 1983. Т. XIV. №4. С. 124–126.
- 16. Соколова И.Н. Горячие струи Коанда // Ученые записки ЦАГИ. 1990. Т. XXI. №4. С. 100–103.
- 17. Ганич Г.А., Гущина Н.И., Жулев Ю.Г. Эффект Коанда при выдуве струй из прямоугольных сопл под углом к плоской поверхности // Ученые записки ЦАГИ. 1994. Т. XXV. №3–4. С. 121–125.
- 18. Жулев Ю.Г., Макаров В.А., Наливайко А.Г. Интенсификация эффекта Коанда с помощью создаваемых в струе продольных вихрей // Ученые записки ЦАГИ. 1997. Т. 28. №1. С. 139–143.
- 19. Zhou Y., Gu Y., Xue L., Jiao Y., Shi N., Deng S. Research on the control of supersonic jet under different boundary conditions // Journal of Visualization. 2024. V. 27. P. 19–32. https://doi.org/10.1007/s12650-023-00948-w
- 20. Trancossi M., Dumas A., Vucinic D. Mathematical modeling of Coanda effect // SAE Technical Paper. 2013. Paper 2013-01-2195. https://doi.org/10.4271/2013-01-2195
- 21. Saha S., Biswas P., Nath S. Bifurcation phenomena for incompressible laminar flow in expansion channel to study Coanda effect // Journal of Interdisciplinary Mathematics. 2020. V. 23. No. 2. P. 493–502. https://doi.org/10.1080/09720502.2020.1731962
- 22. Trancossi M., Pascoa J. The influence of convective exchanges on Coanda effect // INCAS Bulletin. 2019. V. 11. No. 4. P. 191–202. https://doi.org/10.13111/2066-8201.2019.11.4.17
- 23. Matsuo S., Setoguchi T., Kudo T., Yu S. Study on the characteristics of supersonic Coanda jet // Journal of Thermal Science. 1998. V. 7. No. 3. P. 165–175. https://doi.org/10.1007/s11630-998-0012-2
- 24. Kim H., Raghunathan S., Setoguchi T., Matsuo S. Experimental and numerical studies of supersonic Coanda wall jets // Proc. 38th Aerospace Sciences Meeting and Exhibit. 2000. Paper 0814. https://doi.org/10.2514/6.2000-814
- 25. Kim H.D., Rajesh G., Setoguchi T., Matsuo S. Optimization study of a Coanda ejector // Journal of Thermal Science. 2006. V. 15. No. 4. P. 331–336. https://doi.org/10.1007/s11630-006-0331-2
- 26. Dumitrache A., Frunzulica F., Ionescu T. Coanda effect on the flows through ejectors and channels // Scientific research and education in the Air Force. 2018. V. 20. P. 161–174. https://doi.org/10.19062/2247-3173.2018.20.21
- 27. Dumitrache A., Frunzulica F., Ionescu T.C. Mathematical modelling and numerical investigations on the Coanda effect // Nonlinearity, Bifurcation and Chaos—theory and Applications. 2012. P. 101–132. https://doi.org/10.5772/50403
- 28. Киселев С.П., Киселев В.П., Зайковский В.Н. О механизме автоколебаний сверхзвуковой радиальной струи, истекающей в затопленное пространство // Прикладная механика и техническая физика. 2016. Т. 57. №2. С. 53–63.
- 29. Косарев В.Ф., Клинков С.В., Зайковский В.Н., Кундасев С.Г. Газодинамика сверхзвуковой радиальной струи. Часть I // Теплофизика и аэромеханика. 2015. Т. 22. №6. С. 693–703.
- 30. Ameri M., Dybbs A. Coanda ejector: why it works // Proc. 5th Int. Conference on Laser Anemometry: Advances and Applications. 1993. V. 2052. P. 289–296.
- 31. Ameri M. An experimental and theoretical study of Coanda ejectors: PhD Thesis. 1993. 168 p.
- 32. Куснер Ю.С., Приходько В.Г., Ермолов В.И. Структура и откачивающие свойства внутренней части кольцевой сверхзвуковой струи // Журнал технической физики. 1985. Т. 55. №1. С. 186–195.
- 33. Зеленецкий В.А., Терехов В.И. Эжектор для проветривания горных выработок. Патент РФ №23118119. 27.02.2008. Бюл. №6.
- 34. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1991. 600 с.
- 35. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J. 1994. V. 32. №8. P. 1598–1605. https://doi.org/10.2514/3.12149
- 36. Frunzulica F., Dumitrache A., Preotu O., Dumitrescu H. Control of two-dimensional turbulent wall jet on a Coanda surface // PAMM. 2011. V. 11. No. 1. P. 651–652. https://doi.org/10.1002/pamm.201110315
- 37. Gross A., Fasel H. RANS, URANS, and LES of Coanda wall jet flows //Proc. 36th AIAA Fluid Dynamics Conference and Exhibit. 2006. Paper 3371. https://doi.org/10.2514/6.2006-3371
- 38. ANSYS FLUENT 12.1 Theory guide, Solver Theory. ANSYS Inc., 2010.
- 39. Абрамович Г.Н., Гиршович Т.А., Крашенников С.Ю., Секундов А.Н., Смирнова И.П. Теория турбулентных струй. М.: Наука, 1984. 716 с.
- 40. Sierra J., Ardila J., Vélez S., Maya D., Hincapié D. Simulation analysis of a Coanda — effect ejector using CFD // Tecciencia. 2017. V. 12. No. 22. P. 17–25. https://doi.org/10.18180/tecciencia.2017.22.3
- 41. Даньков Б.Н., Дубень А.П., Козубская Т.К. Анализ автоколебательных процессов в каверне с открытым типом течения на основе данных вихреразрешающих расчетов // Изв. РАН. Механика жидкости и газа. 2023. №4. C. 156–166. https://doi.org/10.31857/S1024708422600774
- 42. Dunaevich L., Greenblatt D. Stability and transition on a Coanda cylinder // Physics of Fluids. 2020. V. 32. Paper 084106. https://doi.org/10.1063/5.0013534