RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика жидкости и газа Fluid Dynamics

  • ISSN (Print) 1024-7084
  • ISSN (Online) 3034-5340

EXPERIMENTAL INVESTIGATION OF THE MECHANISMS OF SPONTANEOUS BENDING OF A VISCOUS JET

PII
S30345340S1024708425020074-1
DOI
10.7868/S3034534025020074
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
76-84
Abstract
The mechanisms of the bending flow of a viscous jet (Ohnesorge number greater than 0.05) flowing out of a capillary channel at a low velocity (Weber number is about unity) are experimentally investigated. The bending is due to the effect of internal forces and is not related with the interaction between the liquid and the atmosphere, which is confirmed by experiments performed in a vacuum chamber. A region of intense jet bending amounting to fifteen degrees is formed near the channel end section, at a distance of the jet diameter. Further downstream the jet is “straightened”, the angle of bending being reduced. The dependences of the greatest and overall bending angles on the jet velocity are obtained for different Ohnesorge numbers. The velocities, at which the deflection is maximum, are revealed. The deviation angle values corresponding to large velocities are determined.
Keywords
капиллярная струя самопроизвольный изгиб медленная струя капиллярная форсунка
Date of publication
01.02.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Walzel P. Koaleszenz von flussigkeitsstrahlen an brausen // Chem. Ing. Tech. 1980. V. 5. No. 8. P. 652–654.
  2. 2. Safronov A.A., Koroteev A.A., Agafonov A.E. et al. Experimental Investigation of the Transverse Size of a Viscous Jet Flowing out of a Capillary Channel // Fluid Dynamics. 2024.
  3. 3. Bejan A. On the buckling property of inviscid jets and the origin of turbulence // Lett. Heat Mass Transfer. 1981. V. 8. No. 3. P. 187–194.
  4. 4. Ribe N.M., Habibi M., Bonn D. Stability of liquid rope coiling // Phys. of Fluids. 2006. V. 18. No. 8. 084102.
  5. 5. Jingxuan T., Ribe N.M., Wu X., Shum H.S. Steady and unsteady buckling of viscous capillary jets and liquid bridges // Phys. Review Lett. 2020. V. 125. No. 10.
  6. 6. Ентов В.М., Ярин А.Л. Динамика свободных струй и пленок вязких и реологически сложных жидкостей // Итоги науки и техники. Сер. Механика жидкости и газа. 1984. Т. 18. С. 112–197.
  7. 7. Merrer M.L., Quere D., Clanet C. Buckling of viscous filaments of a fluid under compression stresses // Phys. Review Lett. 2012. V. 109. No. 6.
  8. 8. Lin S.P., Vihinen I., Honohan A., Hudman M. Absolute and convective instability of a liquid jet in microgravity. NASA Report. Mechanical and Aeronautical Engineering Department Clarkson University Potsdam, New York, 1996. 6 p.
  9. 9. Sunol F., Gonzalez-Cinca R. Liquid jet breakup and subsequent droplet dynamics under normal gravity and in microgravity conditions // Phys. Fluids. 2015. V. 27.
  10. 10. Umemura A., Osaka J., Shinjo J. et al. Coherent capillary wave structure revealed by ISS experiments for spontaneous nozzle jet disintegration // Microgravity Sci Technol. 2020. V. 32. No. 3. P. 369–397.
  11. 11. Сафронов А.А., Коротеев А.А., Григорьев А.Л., Филатов Н.И. Моделирование самоиндуцированного капиллярного распада струи вязкой жидкости // Изв. высших учебных заведений. Прикладная нелинейная динамика. 2023. Т. 31. № 6. С. 673–685.
  12. 12. Ganan-Calvo A.M. A revision on Rayleigh capillary jet breakup // arXiv preprint. 2022. arXiv:2210.13426. 9 p. https://doi.org/10.48550/arXiv.2210.13426
  13. 13. Wallace D.B., Hayes D.J., Bush J.M. Study of orifice fabrication technologies for the liquid droplet radiator. MicroFab Technologies, Inc., Piano, Texas, 1991.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library